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Molecular Dynamics

• Solve Newton’s equations of motion:

• Timestep has to be small (fs)

• Forces depend on all particle 
coordinates in the system 

• Generates a system trajectory over time
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MD in Practice

Update coordinates & 
velocities according to 
equations of motion

More steps?

Compute potential V(r) and
forces Fi = iV(r) on atoms

Initial input data:
Interaction function V(r) - "force field"

coordinates r, velocities v

Collect statistics and write 
energy/coordinates to 

trajectory files

Done!
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•Structure Refinement
•Reaction Rates
•Understanding Dynamics
•Protein Folding
•Free Energy (~1 kJ/mol)



Our baby: GROMACS

• Project started 1995 in (Hardware!)
• Highly tuned code for molecular dynamics, 

minimization, analysis (amazing for x86)
• Open source & Free software: GPL
• 3000-5000 users world wide
• Agnostic approach to force fields: Gromacs, 

GROMOS96, OPLS-AA, Amber, Encad, 
Charmm, etc.

http://www.gromacs.org

http://www.gromacs.org
http://www.gromacs.org


How can we push 
simulation performance 
into the “Biology” realm?

Requires a factor 100-1000
improvement



GROMACS Approaches 
• Algorithmic optimization:

• No virial in nonbonded kernels

• Single precision by default (cache, BW usage)

• Tuning to avoid conditional statements such 
as PBC checks

• Triclinic cells everywhere: can save 15-20% 
on system size

• Optimized 1/sqrt(x)

• Used ~150,000,000 times/sec

• Handcoded asm for ia32, x86-64, ia64, 
Altivec, VMX, BlueGene (SIMD instructions)
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• Δt limited by fast motions - 1fs
• Remove bond vibrations

• SHAKE (iterative, slow) - 2fs
• Problematic in parallel (won’t work)
• Compromise: constrain h-bonds only - 1.4fs

• GROMACS (LINCS):

• LINear Constraint Solver
• Approximate matrix inversion expansion
• Fast & stable - much better than SHAKE
• Non-iterative
• Enables 2-3 fs timesteps
• Parallelizes (in theory at least)

t=1

t=2’

t=1

t=2’’

LINCS:

t=1

t=2

A) Move w/o constraint

B) Project out motion
along bonds

C) Correct for rotational
extension of bond

Constraints

Nobody has yet implemented 
efficient parallel constraints!



• Next fastest motions is H-angle and 
rotations of CH3/NH2 groups

• Try to remove them:
• Ideal H position from heavy atoms. 

• CH3/NH2 groups are made rigid

• Calculate forces, then project back onto heavy atoms

• Integrate only heavy atom positions, reconstruct H’s

• Enables 5fs timesteps!
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Better: Virtual sites



Virtual Hydrogens

Interactions Degrees of Freedom



Scaling?



DPPC & Cholesterol
130k atoms

...on a single dual 
dual-core Opteron!

Blue Gene/L & Blue Matter: 
scales to 3 atoms/CPU

~10ns/day on 8192 CPUs

GROMACS: 2ns/day



Classical Decomposition

• Partition space, instead of atoms, over 
nodes

• Previously used in Gromacs (v 3.3)

• Good for load balancing

• Bad for communication bandwidth

• Each node ‘imports’ coordinate and 
exports forces from neighbors within a 
sphere with radius=cutoff (expensive)

Data must be imported 
from whole sphere, although 

it can be optimized to half



8th-sphere decomposition

Red/Yellow cells send coordinates 
to central (purple) cell, where 

interactions are calculated, and 
then forces are sent back

• Smarter: Don’t calculate 
interactions on a home node, but 
on “neutral territory” 

• Drastically reduces communication 
bandwidth needs - see 2D example

• In 3D, we need to import data from 
1/8 sphere to the central cell

• Working in Gromacs CVS version



8th-sphere decomposition
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FIG. 1: Communication patterns for the (a) half shell, (b) eighth shell and (c) midpoint methods illustrated for 2D domain
decomposition. rc is the cut-off radius. The lines with circles show examples of pair interactions that are assigned to the
processor of the central cell. For (a) and (b) the assignment is based on the endpoints of the line, for (c) on the midpoint.
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FIG. 2: The domain decomposition cells (1-7) that communi-
cate coordinates to cell 0. Cell 2 is hidden below cell 7. The
zones that need to be communicated to cell 0 are dashed, rc

is the cut-off radius.

are calculated.
Bonded interactions are distributed over the processors

by finding the smallest x, y and z coordinate of the charge
groups involved and assigning the interaction to the pro-

cessor with the home cell where these smallest coordi-
nates reside. This procedure works as long as the largest
distance between charge groups involved in bonded inter-
actions is not larger than the cut-off radius. To check if
this is the case, we count the number of assigned bonded
interactions during domain decomposition and compare
it to the total number of bonded interactions in the sys-
tem.

For full dynamic load balancing the boundaries be-
tween the cells need to move during the simulation. For
1D domain decomposition this is trivial, but for a 3D
decomposition the cell boundaries in the last two dimen-
sions need to be staggered along the first dimensions to
allow for complete load balancing (we will go into the
details of the load balancing later). Fig. ?? shows the
communicated zones for 2D domain decomposition in the
most general case, namely a triclinic unit cell with dy-
namic load balancing. Zones A, B and C indicate the
parts of cells 1, 2 and 3 respectively that are within the
cut-off radius rc of home cell 0. Without dynamic load
balancing this would be all that would need to be com-
municated to the processor of cell 0. With dynamic load
balancing the staggering can lead to an extra volume C’
in cell 3 that needs to be communicated, due to the non-
bonded interactions between cells 1 and 3 that must be
calculated on the processor of cell 0. For bonded interac-
tions zones A and B might also need to be expanded. To

half-shell “8th-sphere” midpoint
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FIG. 1: Communication patterns for the (a) half shell, (b) eighth shell and (c) midpoint methods illustrated for 2D domain
decomposition. rc is the cut-off radius. The lines with circles show examples of pair interactions that are assigned to the
processor of the central cell. For (a) and (b) the assignment is based on the endpoints of the line, for (c) on the midpoint.
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are calculated.
Bonded interactions are distributed over the processors

by finding the smallest x, y and z coordinate of the charge
groups involved and assigning the interaction to the pro-

cessor with the home cell where these smallest coordi-
nates reside. This procedure works as long as the largest
distance between charge groups involved in bonded inter-
actions is not larger than the cut-off radius. To check if
this is the case, we count the number of assigned bonded
interactions during domain decomposition and compare
it to the total number of bonded interactions in the sys-
tem.

For full dynamic load balancing the boundaries be-
tween the cells need to move during the simulation. For
1D domain decomposition this is trivial, but for a 3D
decomposition the cell boundaries in the last two dimen-
sions need to be staggered along the first dimensions to
allow for complete load balancing (we will go into the
details of the load balancing later). Fig. ?? shows the
communicated zones for 2D domain decomposition in the
most general case, namely a triclinic unit cell with dy-
namic load balancing. Zones A, B and C indicate the
parts of cells 1, 2 and 3 respectively that are within the
cut-off radius rc of home cell 0. Without dynamic load
balancing this would be all that would need to be com-
municated to the processor of cell 0. With dynamic load
balancing the staggering can lead to an extra volume C’
in cell 3 that needs to be communicated, due to the non-
bonded interactions between cells 1 and 3 that must be
calculated on the processor of cell 0. For bonded interac-
tions zones A and B might also need to be expanded. To
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FIG. 3: The zones to communicate to the processor of cell 0,
see the text for details.

ensure that all bonded interaction between charge groups
can be assigned to a processor, it is sufficient to ensure
that the charge groups within a sphere of radius rc are
present on at least one processor for every possible cen-
ter of the sphere. In Fig. ?? this means we also need to
communicate volumes B’ and C’. When no bonded inter-
actions are present between charge groups, these volumes
are not communicated. For 2D decomposition A’, B’ and
C’ are the only extra volumes that need to be considered.
For 3D domain decomposition the pictures becomes quite
a bit more complicated, but the procedure is analogous
apart from more extensive book-keeping. All three cases
have been fully implemented for general triclinic cells.

The communication of the coordinates and charge
group indices can be performed efficiently by ’pulsing’ the
information in one direction simultaneously for all cells.
This needs to be repeated for each dimension. Consider
a 3D domain decomposition where we decompose in the
order x, y, z; meaning that the x boundaries are aligned,
the y boundaries are staggered in along the x direction
and the z boundaries are staggered along the x and y
directions. Each processor first sends the zone that its
neighboring cell in -z needs to this cell. Now each pro-
cessor can send the zone it neighboring cell in -y needs,
plus the part of the zone it received from +z, that is also
required by the neighbor in -y. The last step consists
of a pulse in -x where (parts of) 4 zones are sent over.
In this way on 3 communication steps are required to
communicate with 7 processors, while no information is
sent over that is not directly required by the neighbor-
ing processor. The communication of the forces happens
according to the same procedure, but in reversed order
and direction.

Another example of a minor complication in the com-

munication is virtual interaction sites constructed from
atoms in other charge groups. This is used in some poly-
mer (anisotropic united atom) force fields, but GRO-
MACS can also employ virtual sites to entirely remove
hydrogen vibrations and construct the hydrogens in their
equilibrium positions from neighboring heavy atoms each
timestep. Since the constructing atoms are not necessar-
ily interacting on the same node, we have to track the
virtual site coordinate dependencies separately to make
sure they are both available for construction and that
forces are properly communicated back.

III. DYNAMIC LOAD BALANCING

Calculating the forces is by far the most time consum-
ing part in MD simulations. In GROMACS, the force
calculation is preceded by the coordinate communication
and followed by the force communication. We can there-
fore balance the load by determining the time spent in the
force routines on each processor and then adjusting the
volume of every cell in the appropriate direction. The
timings are determined using inline assembly hardware
cycle counters and supported for virtually all modern
processor architectures. For a 3D decomposition with or-
der x, y, z the load balancing algorithm works as follows:
First the timings are accumulated in the z direction to
the processor of cell z=0, independently for each x and y
row. The processor of z=0 sums these timings and sends
the sum to the processor of y=0. This processor sums the
timings again and send the sum to the processor of x=0.
This processor can now shift the x boundaries and send
these to the y=0 processors. They can then determine
the y boundaries, send the x and y boundaries to the
z=0 processors, which can then determine z boundaries
and send all boundaries to the processors along their z
row. With this procedure only the necessary information
is sent to the processors that need it and global commu-
nication is avoided.

As mentioned in the introduction, load imbalance can
come from several sources. One needs to move bound-
aries in a conservative fashion in order to avoid oscil-
lations and instabilities, which could for instance occur
due to statistical fluctuations in the number of particles
in small cells. We found that scaling the relative lengths
of the cells in each dimension with 0.5 times the load
imbalance, with a maximum scaling of 5% produced ef-
ficient and stable load balancing. Of course, with our
current decision to only communicate to nearest neigh-
bors one has to make sure that cells do not get smaller
than the cut-off radius in any dimension, but when/if this
becomes a bottleneck it is straightforward to add another
step of communication. For a large numbers of cells or
inhomogeneous systems two more checks are required. A
first restriction is that boundaries should not move more
than halfway an adjacent cell (where instead of halfway
one could also choose a different value). This prevents
cells from moving so far that a charge group would move

Dynamic load balancing in 2D
Complicated (but it’s working!) in 3D



MPMD Revisited
• PME = rapid Ewald summation

• Ubiquitous in simulations today

• Small 3D Fourier Transforms scale 
bad - all-to-all communication

• Real space & PME are independent

• Dedicate a subset of nodes to run a 
separate PME-only version of the 
program to improve scaling

• FFT over 5 instead of 25 nodes!

Y

X

PME nodes



GROMACS 4
• Holonomic parallel constraints: P-LINCS

• Virtual site hydrogens & 5fs timesteps, parallel
• Automatic sorting for better caching 
• Timestep counters on ~10 architectures
• Pulsed communication for Cray XT4 & IBM BG
• SIMD assembly for BlueGene double hummers

5

two cells in a single step. It also prevents load balanc-
ing issues when there are narrow zones of high density in
the system. A second problem is that due to the stagger-
ing, cell boundaries along neighboring rows could shift to
such an extent that additional cells would enter the cut-
off radius. To avoid this, we limit the new position of each
boundary to the old limit plus half the old margin. In this
way we make sure that one boundary can move up and
independently an adjacent staggered boundary can move
down, without extra communication. The neighboring
boundaries are communicated after load balancing, since
they are needed to determine the zones for communi-
cation. When pressure scaling is applied the limits are
increase by 2% to allow the system to adjust at the next
domain decomposition before hitting cut-off restrictions
imposed by the staggering.

In practical tests, load imbalances of a factor of 2 on
several hundreds of processors were reduced to 2% af-
ter a few load balancing steps, or a couple of seconds of
simulation time.

IV. PARALLEL HOLONOMIC CONSTRAINTS

There are two strong reasons for using constraints in
simulations: First, a physical reason is that constraints
are a more faithful representation of chemical bonds in
their quantum mechanical ground state than a classical
harmonic potential. Second, a practical reason is that
the rapid bond vibrations limit the time step. Removing
these vibrations by constraining the bonds thus allows
us to increase the time step. A frequently used rule-
of-thumb is 1 fs without constraints, 1.4 fs with bonds
to hydrogens constrained, and 2 fs when all bonds are
constrained. Unfortunately, the common SHAKE? con-
straint algorithm is iterative and therefore not very suit-
able for parallelization - in fact, there has previously not
been any efficient algorithm that could handle constraints
connected over different processors. Most biomolecular
packages therefore use only constraints for bonds involv-
ing hydrogens; the actual time step value can be dicussed,
but since there is clearly a factor 2 difference in reduced
mass between C-H and C-C bonds, holonomic constraints
will always enable time steps a factor

√
2 larger.

By default, GROMACS uses a non-iterative con-
straints algorithm called linear constraint solver
(LINCS), which proved much easier to fully parallelize
as hinted already in the original paper? . In the LINCS
algorithm, the range of influence of coupled constraints
is set by the order of the expansion for the matrix
inversion. Before applying the LINCS algorithm one
can communicate a subset of the old coordinates and
the new unconstrained coordinates between neighboring
cells. The atoms connected by up to one plus the
expansion order bonds away need to be communicated
(see Fig. ??). One can then constrain the local bonds
plus the extra bonds. The communicated atoms will
not have the final correctly constraint positions (since

FIG. 4: Three domain decomposition cells with in circles the
atoms that need to be communicated between the cells for
the parallel LINCS constraint algorithm. Here the LINCS
order is 3, so atoms up to 1+3=4 bonds away need to be
communicated. For simplicity each atom is assumed to be a
separate charge group.

they interact with additional neighbors), but the local
atoms will. The beauty of the algorithm is that normal
molecular simulations only requires a single iterative
step (and even when multiple steps are used for very
high accuracy the number of iterations is fixed), after
which the updated positions are communicated and
adjustment forces calculated locally. The results of
parallel LINCS are identical to those of the single
processor version. The constraint communication can be
accomplished with a single forward and backward pulse
of the decomposition grid in each dimension, similar to
the domain decomposition communication.

Note that the same principle could also be used to
parallelize other constraint algorithms. However, apart
from multiple communication steps for iterative methods
such as SHAKE? , another problem is that one does not
know a priori which atoms need to be communicated,
because the number of iterations is not fixed. To our
best knowledge, this is the first implementation of an
efficient parallel holonomic constraint algorithm.

The accuracy of the velocities of constrained parti-
cles has further been improved both for LINCS and
SHAKE using a recently described procedure based on
Lagrangian multipliers? . For SETTLE? we have ap-



Flowcharts
42 Chapter 3. Algorithms
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Figure 3.12: The Parallel MD algorithm. If the steps marked * are left out we have the sequential

algorithm again.
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GROMACS 4 Scaling

#processes

ns
/d

ay

~280 atoms per core

With PME!



Practical performance

1 μs in 3-4 weeks using 170 CPUs:
100X longer than state-of-the-artCr
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IB

SMP Node allocations
• MPI parallelization on Neolith-like systems

• Intra-node SMP bandwidth higher than IB

• Latency: Pack onto as few nodes as possible? 

4 nodes * 8 cores = 32 processes: 120ns/day on test system



Typical job timeline?

t

Calculation
Communication

Competition for IB hardware!

Calculation



IB

Better IB usage

32 nodes * 1 core = 32 processes: 166ns/day on test system

My job Other jobs



Allocation policies?
• Not only do we get better total throughput, but we

even get 38% better single job performance by sharing!

• Share with everybody, not only yourself

• Bad idea if your colleague is running STREAM

• Very little problems in practice on a life science cluster 
(mix of MD, Bioinformatics, QM)

• 2 processes per node seem to be optimal for Gromacs

• Interleave direct and reciprocal space nodes in Gromacs

• The effect will depend on latency/bandwidth needs

• Haakon: This is best handled by the queue system :-)



IB time-sharing
Packed Time-shared

ns
/d

ay

• There are compromises
with dual quad-core

• But time-sharing IB is 
an almost free lunch!

• Might require queue
system changes?

• Alternative is a mixed
thread/MPI approach



Gromacs & Folding@Home

• Running as a screensaver all over the world

• >200,000 active voluntary clients

• 1.5 Petaflops - working today
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Decoupled Simulations
Perform 10,000 independent 
10ns simulations instead of a 
single 100 µs one



• Start from (short) 
simulation trajectories

• Cluster them into states
• Calculate transition 

probabilities (matrix)
• For markov processes:

Markovian state models

λi(P(n∆t)) = λi(P(∆t))n

Markovian Properties can be checked - usually seems to hold!

Start End



• We can often “work around” communication

• Raw computational power is the bottleneck

• Are there faster computers out there?

• We’ve spent tons of time on x86 optimization

• Using assembly, game instructions for 

• Tried FPGA, special FP cards (too expensive)

• New ASIC hardware from DE Shaw in 2008

• Expensive doesn’t even begin to describe it...

A sneak peak of...

1/
√

x



... the future of computation?

200 Gflop

HD2900XT: 600 Gflop

360 Gflop

Intel Polaris



GPU peptide folding

Still extremely primitive, but we can do 50 microseconds a day!



Summary
• Multi-level parallelism necessary

• SIMD -> Threads -> MPI -> Distributed Computing 

• Neutral Territory Decomposition is 
counter-intuitive, but extremely efficient

• Performance matters. Relative scaling doesn’t.

• For Neolith and similar systems, it often works better 
to interleave communicating processes

• Too late to start optimizing for 4-8 cores!

• Streaming architectures are coming

• But you WILL need to adapt your algorithms

• Not optional - single cores won’t scale 



Thanks for the fish...

Carl Tryggers
Stiftelse
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