Hierarchic Matrices P. Sałek Sparse QM Error Contro

Parallelization

Hierarchic Data Structures for Sparse Matrix Representation in Large-scale DFT/HF Calculations

> Paweł Sałek Theoretical Chemistry, KTH, Stockholm

> > 16-18 October 2007, Linköping

Talk Outline

- Hierarchic Matrices P. Sałek Sparse QM Error Contro HMLib
- Parallelization

- Running large-scale ab-initio calculations scaling.
- Solving problems with sparse matrices.
- OpenMP parallelization problems.

Performance of the SCF Cycle

Hierarchic Matrices

Sparse QM

- Error Control
- Parallelization

- Computation of Kohn-Sham matrix *F* is time-consuming.
- For really large systems, density evaluation $(F \rightarrow D)$ is time-consuming as well.
- Matrix memory usage grows quadratically.
- Local basis set basis functions localized on atoms.

Research Group

- Hierarchic Matrices P. Sałek
- Sparse QM
- Error Contro
- HMLib
- Parallelization

- Elias Rudberg: Interaction evaluation (PhD in December).
- Emanuel Rubensson: Sparse matrices.

$F \rightarrow D$ Step

Hierarchic Matrices P. Sałek

Sparse QM Error Contro

Parallelization

Density traditionally obtained via diagonalization and *aufbau* principle:

$$FC = \epsilon SC$$
 $D = C_{\rm occ}C_{\rm occ}^T$

- Diagonalization does not scale linearly.
- Density optimization and purification algorithms scale linearly when sparsity is used.

Sparse Matrices in Quantum Chemistry

Hierarchic Matrices P. Sałek

Sparse QM

Error Control HMLib

- Matrices are used to represent operators D and F.
- Overlap matrix, Density matrix, Fock Matrix, Kohn-Sham matrix.
- Matrices must be represented in such a way that common operations are fast.
- Sparsity appears only for larger molecules (> 50 atoms).

Sparsity Patterns

Matrix sparsity depends on the basis set and geometry and to some extend on the band gap.

Taking Advantage of Sparsity Patterns

Hierarchic Matrices

Sparse QM

Reordered

Alkane chain Fock matrix

 Enforce sparsity by small element truncation.

blocks and Compressed-Sparse Row (CSR) format for block

 Sparsity appears in blocks. • Reorder atoms to merge the atom blocks in larger ones. Use BLAS for operations on

storage.

and blocked

$F \rightarrow D$ Step With Sparse Matrices

Hierarchic Matrices

Sparse QM Error Control HMLib

- Use Trace-Correcting Purification – a series of spectral transformations.
- Performance limited by the sparse matrix multiplication speed.


```
compute P = (lmax I-F)/(lmax-lmin)
while abs(trace(P)-N)>threshold
  if(trace(P)>N) then
    P := P*P
  else
    P := 2*P-P*P
end while
```

Example TC2 Application

Problems with TC2

Hierarchic Matrices P. Sałek

- Sparse QM
- Error Control
- Parallelization

- Number of TC2 iterations depends the bandgap.
- Control the error: TC2 error grows exponentially with the number of iterations.
- More flexible representation than Compressed Sparse Row is needed for easy implementation of other algorithms.

Systematic Small-Submatrix Selection Algorithm

Hierarchic Matrices

Sparse QM

- Error Control
- HMLib
- Parallelization

- Error introduced by truncation of small elements.
- First approaches considered only distance between atoms and empirical threshold factors unreliable!
- More advanced approaches look at the norms of neglected blocks – more reliable but strict error control still impossible.
- SSSA looks at the error of the entire matrix. Provides strict error control.

The Effect of SSSA on Total Energy Error

Hierarchic Matrices P. Sałek Sparse QM Error Control HMLib Parallelization

Benchmark on water clusters with Hartree-Fock and STO-3G. alg. 1: threshold based filtering, alg. 2: SSSA.

SSSA provides rigorous error control. \rightarrow Saves time and gives trustworthy results. Energy extrapolation possible.

Hierarchic Matrix Library (C++)

typedef Matrix<Matrix<double> >

> MyMatrixType;

typedef Matrix<Matrix<long double> >

> MyAccurateMatrixType;

HML Features

Hierarchic Matrices P. Sałek

- Sparse QM
- Error Control
- HMLib
- Parallelization

- Easy to code and maintain.
- Block size determined by the architecture performance, not chemistry.
- Low overhead random element access.
- Blocked algorithms easy to express:
 - Matrix multiplication, also by transposed matrices.
 - 2 Use of matrix symmetry.
 - INverse CHolesky factorisation (INCH).

Block Size Tradeoff

Hierarchic Matrices

P. Sałek

Sparse QM

Error Contro

HMLib

- \bullet Smaller block size \rightarrow more opportunity for screening.
- Larger block size \rightarrow better block-block multiplication performance.

Example Implementation of C := beta*C + A*B

Hierarchic Matrices P. Sałek parse QM

Error Contro

HMLib

- }
- Lowest level (block) multiplication expressed in terms of BLAS calls.
- Template expansion will generate (*instantiate*) code for all the remaining hierarchy levels.

Intel MKL vs HML Benchmark

Hierarchic Matrices

P. Sałek

Sparse QM

Error Contro

HMLib

- HML design allows for easy implementation of symmetric matrix multiplication (sysq: $S = \alpha T^2 + \beta S$) as needed by TC2:
- sysq twice faster than general sparse multiplications.

OpenMP Parallelization

Hierarchic Matrices P. Sałek

Sparse QM Error Contro

HMLib

- Parallel programs necessary to efficiently use modern multi-core hardware.
- OpenMP less *invasive* and easier to load-balance.
- Problems with scaling and... compiler support.
- Poor compiler support! GNU gcc is the only reliable, OpenMP-enabled compiler known to us so far.

Details of OpenMP Parallelization

- Hierarchic Matrices P. Sałek
- Sparse Qivi
- HMLib
- Parallelization
- Pick a level in the hierarchy, run a parallel loop with dynamic scheduling over it.
- Approach trivial to implement.
- Higher levels: coarse load distribution.
- Lower levels: thread startup overhead.

Exceptions and OpenMP

Hierarchic Matrices P. Sałek

Error Contro

HMLib

```
• OpenMP and C++ exceptions do interact.
```

- Threads must catch any exceptions that are generated. The behavior is undefined otherwise.
- We do the *right* thing (in case you ask).

```
#pragma omp parallel for
for (int i = 0; i < MAX; i++) {
  try {
    // Heavy lifting here
  } catch (...) { /* Handle it nicely. */ }
}
```

Compiler Problems

Hierarchic Matrices P. Sałek

Error Contro

HMLib

- GNU C++ OpenMP support since 4.1(?). No problems found. Sequential performance lower than its competitors.
- Portland C++ fairly warns that it cannot handle exceptions and OpenMP at the same time. A honest warning but. . .
 - Intel C++ 3 versions tried. All of them had bugs either in sequential code or in OpenMP parallelization.
 8.1 fails to generate correct sequential code; miscompiles OpenMP code as well.
 9.1 works sequentially; compiler crashes with executed with -openmp flag.
 10.0 fails to generate correct sequential code. Support tickets with Intel are open.

OpenMP Speedup

Hierarchic Matrices

- Sparse QM
- Error Contro
- HMLib
- Parallelization

- Timings taken on 1.5GHz Itanium2, 4 CPU (luc2, PDC), 4 threads.
- Glycine-Alanine chain with 1600+ atoms, HF method. GNU C++.

Operation	CPU time [s]	Wall time [s]	Speedup
FDS-SDF	133.54	53	2.66
Purification	947.59	454	2.13

- Acceptable multiplication load balancing (3.5/4.0) but serial data management has negative impact on scalability.
- Additionally, purification involves serial error estimation routines.

Summary & Outlook

Hierarchic Matrices P. Sałek

- Sparse QM Error Contro
- HMLib
- Parallelization

- SSSA for strict error control.
- HML flexible sparse matrix representation.
- A number of algorithms (arbitrary MxM multiplications, inverse Cholesky factorisation) already implemented.
- OpenMP parallelization.

Outlook

• Analyse the sparsity in the QM methods beyond the algorithms relevant for SCF: Linear response for calculation of molecular properties.

Small Submatrix Selection Algorithm (SSSA)

Matrices P. Sałek Sparse QM Error Contro

Hierarchic

HIVILID

Parallelization

Given a matrix norm $\|\cdot\|$ and an error limit ε we want to find a sparse approximation \widetilde{A} of A so that $\|A - \widetilde{A}\| < \varepsilon$.

SSSA:

- Compute the Frobenius norm of each submatrix.
- Sort the values in descending order.
- Remove submatrices from the end as long as the error is within desired accuracy.

 \Longrightarrow Error very close to the requested value in the Frobenius norm.