
Interacting with the
queuing system

1

Allocating resources: batch
or interactive

▪ @ NSC
▫ $ sbatch [resource req.] job-script.sh

■ Once submitted, no user interaction
■ Only performs job-script.sh instructions
■ Suitable for production simulations

▫ $ interactive [resource req.]
■ Direct access to node(s)
■ Suitable for troubleshooting and testing

2

https://www.nsc.liu.se/support/batch-jobs/introduction/
https://www.nsc.liu.se/support/running-applications/

3

Some common SLURM options
Short Long Explanation

-t --time Time limit for the job

-n --ntasks How many parallel processes your job will start

-c --cpus-per-task How many processors are needed for a single task

-A --account What account should this job be run under

-J --job-name Name for the job allocation

-N --nodes How many nodes to request

-C --constraint Required node features

-e --error File in which to store job error messages

-o --output File in which to store job output messages

--reservation Allocate resources for the job from the named reservation

--mail-type Notify user by email when certain event types occur.

https://slurm.schedmd.com/overview.html
https://slurm.schedmd.com/sbatch.html

4

Three ways of specifying resource req. (SLURM options): in
order of increasing priority

1. Specified in a jobscript

#!/bin/bash
#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 1 # How many parallel processes your job will start
#SBATCH -A my-project-code # What account should this job be run under

2. Set in the environment

$ export SBATCH_TIMELIMIT=01:00:00
$ export SLURM_NTASKS=1
$ export SLURM_JOB_ACCOUNT=my-project-code

3. Specified as command line options

$ sbatch -t 01:00:00 -n 1 -A my-project-code job-script.sh

Allocating resources

▪ Know the parallelism model that your
code uses
▫ shared memory (OpenMP)
▫ distributed memory (MPI)
▫ hybrid
▫ ...

5

6

Example: Shared memory (OpenMP) using 16 threads

#!/bin/bash

#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 1 # How many parallel tasks your job will start
#SBATCH -c 16 # How many processors are needed for a single task
#SBATCH -A my-project-code # What account should this job be run under
#SBATCH -J my-openmp-job # Name for the job allocation

Set the number of OpenMP threads based on the SLURM cpus per task variable
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Execute my program
./openmp-program

7

Example: Distributed memory (MPI) using 128 tasks

#!/bin/bash

#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 128 # How many parallel tasks your job will start
#SBATCH -A my-project-code # What account should this job be run under
#SBATCH -J my-mpi-job # Name for the job allocation

Execute my program using the NSC mpi launcher (mpprun)
mpprun mpi-program

8

Example: Distributed memory (MPI) using 128 tasks using
installed module

#!/bin/bash

#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 128 # How many parallel tasks your job will start
#SBATCH -A my-project-code # What account should this job be run under
#SBATCH -J my-mpi-job # Name for the job allocation

Load module (module purge first)
module purge
module load my-favorite-software/1.2.3-nsc1-intel-2018a-eb

Execute my program using the NSC mpi launcher (mpprun)
mpprun my-favorite-mpi-program

9

Example: Hybrid (MPI + OpenMP) model (32 tasks, 4 threads per
task)

#!/bin/bash

#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 32 # How many parallel tasks your job will start
#SBATCH -c 4 # How many processors are needed for each task
#SBATCH -A my-project-code # What account should this job be run under
#SBATCH -J my-hybrid-job # Name for the job allocation

Set the number of OpenMP threads based on the SLURM cpus per task variable
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

Execute my program using the NSC mpi launcher (mpprun)
mpprun hybrid-program

10

Many serial programs

▪ There are several ways to start many
independent serial instances within one
jobscript, e.g.
▫ srun --multi-prog (simple example)
▫ gnu parallel

https://slurm.schedmd.com/srun.html
https://www.chpc.utah.edu/documentation/software/serial-jobs.php#multiprog
https://www.gnu.org/software/parallel/

11

Requesting resources:
hybrid systems

▪ there are many SLURM features for the
control of allocations containing GPUs.
(--gpus, --gpus-per-task, --gpu-bind, --gpus-per-node, --mem-per-gpu, ..)

▪ this means there are many ways in
which you can give conflicting allocation
directives (ie. screw up)

Requesting resources:
hybrid systems

▪ Allocating GPUs correctly depends on:
▫ The system
▫ The center operating the system
▫ Intended purpose
▫ ...

▪ Read the documentation: “If it isn’t
documented, it doesn’t exist”

12

Requesting resources:
hybrid systems

▪ @NSC
▫ Tetralith

■ GPU user guide

■ Running demanding accelerated OpenGL

applications
▫ Sigma: GPU user guide

 13

https://www.nsc.liu.se/support/systems/tetralith-GPU-user-guide/
https://www.nsc.liu.se/support/graphics/
https://www.nsc.liu.se/support/graphics/
https://www.nsc.liu.se/support/systems/sigma-GPU-user-guide/

Monitoring your job

14

Runtime monitoring

▪ Queue status
▫ For systems running SLURM

■ $ squeue -u [user id]

15

https://slurm.schedmd.com/squeue.html

Runtime monitoring

▪ Find and use the tools provided by
your center
▫ For systems running SLURM

■ $ sstat -j [job id]
▫ @ NSC:

■ $ jobload [jobid]
■ More information on monitoring

16

https://slurm.schedmd.com/sstat.html
https://www.nsc.liu.se/support/batch-jobs/tetralith/monitoring/

Runtime monitoring

1. Login to (one) of your running compute nodes
▫ @NSC: $ jobsh [node label]

2. Examine the status of your running job
▫ top, htop
▫ perf top
▫ hwloc-ps
▫ collectl
▫ ...

17

https://www.geeksforgeeks.org/top-command-in-linux-with-examples/
https://www.geeksforgeeks.org/htop-command-in-linux-with-examples/
https://man7.org/linux/man-pages/man1/perf-top.1.html
https://linux.die.net/man/1/hwloc-ps
https://www.geeksforgeeks.org/collectl-performance-analysis-tool-in-linux/

Runtime monitoring: Target

1. All the allocated resources (cores) are
being utilized (@ close to 100%)

2. A relatively low amount of time is
being spent in communication

3. Memory use is not close to the node
limit

18

Post query and logs

▪ For systems that use SLURM, seff is
your friend

19

https://sites.google.com/a/case.edu/hpcc/jobs/slurm-command-overview/seff

20

seff example:

[struthers@tetralith1 testrun]$ seff 12730826
Job ID: 12730826
Cluster: tetralith
User/Group: struthers/struthers
State: COMPLETED (exit code 0)
Nodes: 1
Cores per node: 32
CPU Utilized: 01:23:47
CPU Efficiency: 81.40% of 01:42:56 core-walltime
Job Wall-clock time: 00:03:13
Memory Utilized: 10.96 GB
Memory Efficiency: 12.07% of 90.75 GB
[struthers@tetralith1 testrun]$

Memory management

21

Memory management: Out
Of Memory (OOM)

▪ A common cause for a job to fail is exhausting
the memory on one or more nodes

▪ How to check:
a. Determine memory use while the job is running

(e.g. run top on one of the compute nodes)
b. Use the seff command when the job has ended

22

Memory management

▪ Things to try (if you are OOM’ed)
▫ Use nodes with more memory
▫ For MPI applications

■ Use less cores per compute node
■ Use more MPI tasks

23

24

Example: MPI model (Tetralith)
Original (4 Nodes, 128 tasks) - FAIL with OOM
#!/bin/bash

#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 128 # How many parallel tasks your job will start
#SBATCH -A my-project-code # What account should this job be run under
#SBATCH -J my-mpi-job # Name for the job allocation

Execute my program using the NSC mpi launcher (mpprun)
mpprun mpi-program

1. Modified to increase effective memory per task (4 Nodes, 64 tasks)
#!/bin/bash

#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 64 # How many parallel tasks your job will start
#SBATCH --ntasks-per-node=16 # Default=32
#SBATCH -A my-project-code # What account should this job be run under
#SBATCH -J my-mpi-job # Name for the job allocation

Execute my program using the NSC mpi launcher (mpprun)
mpprun mpi-program

25

2. Modified to increase effective memory per task (8 Nodes, 128 tasks)
#!/bin/bash

#SBATCH -t 01:00:00 # Time limit for the job
#SBATCH -n 128 # How many parallel tasks your job will start
#SBATCH --ntasks-per-node=16 # Default=32
#SBATCH -A my-project-code # What account should this job be run under
#SBATCH -J my-mpi-job # Name for the job allocation

Execute my program using the NSC mpi launcher (mpprun)
mpprun mpi-program

