

RSPt

Diana Iuşan

UPPMAX

Division of Materials Theory Department of Physics and Astronomy Uppsala University

RSPT IN THEORY

What is RSPt?

RSPt

- Relativistic Spin-Polarized toolkit
- a tool to calculate the properties of a system of many interacting electrons
 - standard density functional theory (LDA/GGA)
 - ✓ for non- or weakly-correlated electron systems
 - dynamical mean-field theory
 - ✓ weakly-correlated electron systems
 - ✓ strongly correlated electron systems

The basis

• full-potential linear muffin-tin orbital method (FP-LMTO)

$$\begin{split} & \bigvee_{lm}^{MTO}(\varepsilon,\kappa,\mathbf{r}) = \mathcal{Y}_{lm}(\hat{\mathbf{r}}) \begin{cases} \phi_l(\varepsilon,r) + \mathcal{J}_l(\kappa,r) \cot\left[\eta_l(\varepsilon)\right] & \mathsf{MT} \\ \mathcal{K}_l(\kappa,r) & \mathsf{INT} \end{cases} \end{split}$$

RSPt features

- full-potential LMTO with spin-polarization
- all electron code
- scalar relativistic with spin-orbit coupling
- fully parallelized over k-points and atoms
- SIC, LDA+U, and LDA+DMFT implementations
- inter-atomic magnetic exchange parameters

Features close to completion:

- fully relativistic implementation
- non-collinear magnetism
- XAS

What can RSPt do for us?

- equilibrium volumes of materials
- cohesive energies
- valence configuration
- elastic constants
- magnetic moments
- one-particle excitation spectra
- band structures
- Fermi surfaces
- dielectric tensor and XMCD spectra

When to use RSPt?

- fully relativistic \rightarrow accurate even for open structures
- when accurate total energies are needed
 - magneto-crystalline anisotropy (MAE)
 - relative phase stability (crystallographic, magnetic)
 - when studying a wide range of pressures
- for compounds consisting of rare-earth or actinide elements
- for strongly correlated materials:
 - ▶ iron chalcogenides (LaFePO, ...)
 - ▶ non-magnetic oxides (VO₂, ...)
 - ► Fe₃O₄
 - manganites
 - transition metal elements: Ni
 - ▶ nuclear fuel materials (UO₂, ...)

The reference book

John M. Wills Mebarek Alouani Per Andersson Anna Delin Olle Eriksson Oleksiy Grechnyev

SPRINGER SERIES IN SOLID-STATE SCIENCES 167

Full-Potential Electronic Structure Method

Energy and Force Calculations with Density Functional and Dynamical Mean Field Theory

☑ Springer

http://www.springer.com/cn/book/ 9783642151439

RSPT IN PRACTICE

How to get started?

- symt.inp
 - defines the geometry
 - chemical species at different sites
 - what kind of calculations one wants to perform

Example of a symt.inp file

V
V
V
V
01
01
01
01
02
02
02
02

<pre># Lattice constant in lengthscale</pre>	a.u.:		
10 8601376004			
# Lattice vectors (columns)			
latticevectors			
1 0000000000000000	0 0000000000000000	-0 504820026206751	
0 0000000000000000000000000000000000000	0 788949354104004	0.0000000000000000	
0 0000000000000000000000000000000000000	0 0000000000000000	0 787070573866038	
# Spin axis	0.0000000000000000000000000000000000000	01/0/3/03/3000030	
spinaxis			
0.0000000000000000	0.0000000000000000000000000000000000000	0_0000000000000000000000000000000000000	1
# Sites			
atoms			
12			
0.239470000000000	0.978940000000000	0.026460000000000	23 l 4e_V
0.760530000000000	0.021060000000000	0.973540000000000	23 l 4e_V
0.760530000000000	0.478940000000000	0.473540000000000	23 l 4e_V
0.239470000000000	0.521060000000000	0.526460000000000	23 l 4e_V
0.106160000000000	0.211850000000000	0.208590000000000	8 l 4e_01
0.893840000000000	0.788150000000000	0.791410000000000	8 l 4e_01
0.893840000000000	0.711850000000000	0.291410000000000	8 l 4e_01
0.106160000000000	0.288150000000000	0.708590000000000	8 l 4e_01
0.400510000000000	0.702580000000000	0.298840000000000	8 l 4e_02
0.599490000000000	0.297420000000000	0.701160000000000	8 l 4e_02
0.599490000000000	0.202580000000000	0.201160000000000	8 l 4e_02
0.400510000000000	0.797420000000000	0.798840000000000	8 l 4e_02
# Perform a spin polarized calculation			
#spinpol			
<pre># Perform a fully relativistic calculation</pre>			
#fullrel			

Electronic Structure Workshop NSC, 2017-03-29

Files needed for DFT calculations

- symcof
 - defines the symmetry of the lattice
- atomdens
 - initial atomic density
- data
 - details of the calculation:
 - exchange-correlation functional
 - basis
 - type of mixing, ...
- spts, tetra
 - defines the sampling of the Brillouin zone

For DMFT: green.inp

convergency 1d-6 1d-4 900 300

inputoutput T T T

spectrum Hyb Dos Proj

energymesh 4001 -2.0 2.0 0.010

verbose Sigma Projection Solver Dc Dump ! verbstr

projection 2

mixing 1 0.10000 0.100

```
! Ni 3d type 1
cluster
1 2 eV
1 2 1 1 0 6.00 0.95
6 2 0.3
8 0 -4 2.0 6 10
0.000 0.0
```

! ntot udef [nsites] [e_unit] ! t l e site basis, U J or F0 F2 F4 (F6) ! solv DC sigma_mix [symbrk] ! ed_nelec, ed_nextra, ed_nenvextra, ed_n, ed_nfit, ed_sweight

Electronic Structure Workshop NSC, 2017-03-29

Now run(s)...

#!/bin/bash -l # The -l above is required to get the full environment with modules # Set the allocation to be charged for this job # not required if you have set a default allocation #SBATCH -A 2017-00-00 #SBATCH --mail-user my.email@physics.uu.se **#SBATCH** --mail-type=ALL # The name of the script is myjob #SBATCH -J myjob #SBATCH -t 24:00:00 # Number of nodes #SBATCH -N 8 #SBATCH --ntasks-per-node=32 # Number of MPI processes. #SBATCH -n 256 #SBATCH -e error file.e #SBATCH -o output file.o module swap PrgEnv-cray PrgEnv-intel module swap intel/14.0.4.211 intel/15.0.1.133 module unload cray-libsci

/../rspt-1.1/bin-sandibridge/runs "aprun -n 256 /../rspt-1.0/bin-haswell/rspt" 1e-13 100

Technical details

- written in Fortran and C
- makes use of BLAS, LAPACK, and FFTW \rightarrow Intel MKL
- MPI parallelism over k-points, and atoms
- available for GPU as well
- NPAR, NSIM, KPAR
- "-DMEMORY_STORE"

 \rightarrow keep more in memory, write less to file

Scaling @UPPMAX

How many nodes or processors should I use?

- RSPt is parallelized over k-points
 → very good scaling (~linear) up to number of processors = # of k-points
 ✓ for relatively small cells
- RSPt is also parallelized over atoms and bands number of processors = # of k-points x i

i = 2, 3, ..., 8

Keep yourself updated about RSPt!

- in constant development in order to introduce new features and optimizations
- the RSPt webpage:
 - http://fplmto-rspt.org
 - forum
 - latest release of the code
 - RSPt schools and workshops
- for developers
 - ▶ GitHub
 - UU, KTH, Los Alamos National Lab, Strasbourg Univ.
 - email me: at diana.iusan@physics.uu.se